AROMATIC PROPELLENES. PART 3. NMR, X-RAY CRYSTALLOGRAPHY AND SEMI-EMPIRICAL CALCULATIONS ON THE CONFORMATIONAL ISOMERISM OF 1,2,4,5-TETRAKIS (PYRAZOL-1'-YL)-3,6-BIS(3",5"-DIMETHYLPYRAZOL-1'-YL) BENZENE

CONCEPCION FOCES-FOCES* AND CRISTINA FERNÁNDEZ-CASTAÑO

Departamento de Cristalografía, Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, E-28006 Madrid, Spain

ROSA MARÍA CLARAMUNT* AND CONSUELO ESCOLÁSTICO

Departarnento de Química Orgánica y Biología, UNED, Senda del Rey s/n, E-28040 Madrid, Spain

AND

JOSÉ ELGUERO

Instituto de Química Médica, Centro de Química Orgánica 'Manuel Lora Tamayo,' CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain

The molecular and crystal structures of two crystalline forms of 1,2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"dimethylpyrazol-1"-yl) benzene and one inclusion complex with two molecules of acetic acid were determined by x-ray analysis. The acetic acid forms dimers through symmetry centers and the only interactions in the structures are mainly due to weak C—H…N interactions. All 14 possible conformations of the pyrazole with regard to the benzene ring were explored by means of AM1 semi-empirical calculations. The observed conformation in the crystal structures agrees fairly well with the most stable conformation which presents the pyrazole rings with the N(2) alternating between both sides of the phenyl plane. These calculations allow one to identify the minor isomer present in solution together with the major isomer corresponding to the crystal structure.

INTRODUCTION

In Parts 1 and 2, we reported the study of the conformational isomerism of hexa(3',5'-dimethylpyrazol-1' $yl)benzene [(dmpz)_6bz]¹ and <math>hexa(pyrazol-1'$ $yl)benzene [(pz)_6bz].² We now discuss 1,2,4,5$ tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"-dimethylpyrazol- $1"-yl)benzene [(pz)_4(dmpz)_2bz] (1). The fact that there$ are two different pyrazoles in a kind of*para*situationmakes the number of conformational isomers increasefrom 8 (9 counting enantiomerism) to 14 (15 takinginto account that they are two enantiomers in the case of**3a**) and that the graph representing all the single interconversion paths (see Scheme 1) becomes much more

CCC 0894-3230/96/100717-11 © 1996 by John Wiley & Sons, Ltd. complex. As in the previous papers,^{1,2} black represents up(u) and white represents down(d) and circles and squares correspond to $pz^{1,2}$ and dmpz (this work), respectively.

Scheme 1

Received 23 April 1996 Revised 31 May 1996

^{*} Authors for correspondence.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra in solution were recorded on a Bruker AC200 instrument operating at 200.13 and 50.32 MHz, respectively. The ¹³C cross-polarization magic angle spinning (CP/MAS) NMR spectrum of **1b** was recorded on the same instrument using the conditions described elsewhere.³

Materials. Pyrazole (23.67 mmol) in 20 ml of anhydrous THF was placed in a three-necked round-bottomed flask provided with a reflux refrigerant, argon

atmosphere and magnetic stirring. To this solution, 23.67 mmol of NaH (60% oil dispersion) were added in small portions and the reaction mixture was heated at 65 °C for 1 h. After cooling, 5.92 mmol of 1,4-bis(3',5'-dimethylpyrazol-1'-yl)-2,3,5,6-tetrafluorobenzene were added and the mixture was heated under reflux for 6 h. A white precipitate of 1,2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"-dimethylpyrazol-1'-yl)benzene (1) was formed, which, after filtration, was rinsed first with 20 ml of water and then with 20 ml of THF: yield 95%, $R_f = 0.44$ [dichloromethane-ethanol (95:5)], m.p. by differential scanning calori-

Crystal data C ₂₈ H ₂₆ N ₁₂ .2C ₂ H ₄ O ₂ Crystal habit Colorless, prism Colorless, prism Colorless, prism Colorless, prism Colorless, prism Colorless, prism Colorless, plate Crystal size (mm) $0.50 \times 0.16 \times 0.13$ $0.24 \times 0.13 \times 0.13$ $0.47 \times 0.33 \times 0.07$ Symmetry Triclinic, P-1 Monoclinic, C2/m Triclinic, P-1 Unit cell determination: Least-squares fit from 68 Least-squares fit from 68 Least-squares fit from 68 Unit cell dimensions (Å, °) $a = 10.501(6)$ $a = 14.3565(10)$ $a = 11.2133(15)$ $b = 14.3411(24)$ $b = 14.6551(7)$ $b = 10.7153(7)$ $c = 8.3867(7)$ $112.134(10)$ 90 112.416(8) 113.529(6) 99.110(4) 77.589(7) $95.321(4)$ 90 116.219(10) 84.4(2), 1 10.219(10) 1366.2(3), 2 1338.0(1), 2 834.4(2), 1 D_{1} (g cm ³) $M_{1}E(000)$ 1.290, 530.59, 556 1.317, 530.59, 556 1.237, 530.59, 556 1.237		1a	1b	1 · 2AcOH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Crystal data	· · · · · · · · · · · · · · · · · · ·		
Crystal habitColorless, prismColorless, prismColorless, prismColorless, prismCrystal size (mm) $0.50 \times 0.16 \times 0.13$ $0.24 \times 0.13 \times 0.13$ $0.47 \times 0.33 \times 0.07$ SymmetryTriclinic, P-1Monoclinic, C2/mTriclinic, P-1Unit cell determination:Least-squares fit from 68Least-squares fit from 68Least-squares fit from 7Unit cell dimensions (Å, °) $a = 10.501(6)$ $a = 14.3565(10)$ $a = 10.7153(15)$ $b = 14.3411(24)$ $b = 14.6551(7)$ $b = 10.7153(7)$ $c = 11.0770(11)$ $c = 6.4408(2)$ $c = 8.3867(7)$ $112.134(10)$ 90 $112.416(8)$ $113.529(6)$ $99.110(4)$ $77.589(7)$ $95.321(4)$ 90 $116.219(10)$ Packing: V (Å ³), Z $1366.2(3), 2$ $1338.0(1), 2$ $834.4(2), 1$ Low (Solution of the column of	Formula	$C_{22}H_{26}N_{12}$	$C_{28}H_{26}N_{12}$	$C_{22}H_{24}N_{12}Z_{2}H_{4}O_{2}$
Crystal size (mm) $0.50 \times 0.16 \times 0.13$ $0.24 \times 0.13 \times 0.13$ $0.47 \times 0.33 \times 0.07$ SymmetryTriclinic, P-1Monoclinic, C2/mTriclinic, P-1Unit cell determination:Least-squares fit from 68Least-squares fit from 68Least-squares fit from 68Unit cell dimensions (Å, °) $a = 10.501(6)$ $a = 14.3565(10)$ $a = 11.2133(15)$ $b = 14.3411(24)$ $b = 14.6551(7)$ $b = 10.7153(7)$ $c = 11.0770(11)$ $c = 6.4408(2)$ $c = 8.3867(7)$ $112.134(10)$ 90 $112.416(8)$ $113.529(6)$ $99.110(4)$ $77.589(7)$ $95.321(4)$ 90 $116.219(10)$ Packing: V (Å ³), Z $1366.2(3), 2$ $1338.0(1), 2$ $834.4(2), 1$ D (g cm ³) M F(000) $11.299(50, 50.70, 342)$	Crystal habit	Colorless, prism	Colorless, prism	Colorless, plate
SymmetryTriclinic, P-1Monoclinic, $C2/m$ Triclinic, P-1Unit cell determination:Least-squares fit from 68Least-squares fit from 68Least-squares fit from 68Unit cell dimensions (Å, °) $a = 10.501(6)$ $a = 14.3565(10)$ $a = 11.2133(15)$ $b = 14.3411(24)$ $b = 14.6551(7)$ $b = 10.7153(7)$ $c = 11.0770(11)$ $c = 6.4408(2)$ $c = 8.3867(7)$ $112.134(10)$ 90 $112.416(8)$ $113.529(6)$ $99.110(4)$ $77.589(7)$ $95.321(4)$ 90 $116.219(10)$ Packing: V (Å ³), Z $1366.2(3), 2$ $1338.0(1), 2$ $834.4(2), 1$ D (g cm ³) M $F(000)$ $1.209, 530.59, 556$ $1.317, 530.59, 556$ $1.295, 650.70, 342$	Crystal size (mm)	$0.50 \times 0.16 \times 0.13$	$0.24 \times 0.13 \times 0.13$	$0.47 \times 0.33 \times 0.07$
Unit cell determination:Least-squares fit from 68 reflections $(\theta < 45^{\circ})$ Least-squares fit from 68 reflections $(\theta < 45^{\circ})$ Least-squares fit from 68 reflections $(\theta < 45^{\circ})$ Unit cell dimensions (\mathring{A}, \circ) $a = 10.501(6)$ $b = 14.3411(24)$ $a = 14.3565(10)$ $b = 14.6551(7)$ $a = 11.2133(15)$ $b = 10.7153(7)$ $c = 11.0770(11)$ $112.134(10)$ $b = 14.6551(7)$ 90 $b = 10.7153(7)$ $c = 8.3867(7)$ Packing: $V(\mathring{A}^3), Z$ 1366.2(3), 21338.0(1), 2834.4(2), 1Packing: $V(\mathring{A}^3), M, F(000)$ 12.200, 530.59, 5561.317, 530.59, 5561.225, 650.70, 342	Symmetry	Triclinic, P-1	Monoclinic, $C2/m$	Triclinic, P-1
Unit cell dimensions (Å, °) $a = 10.501(6)$ $a = 14.3565(10)$ $a = 11.2133(15)$ $b = 14.3411(24)$ $b = 14.6551(7)$ $b = 10.7153(7)$ $c = 11.0770(11)$ $c = 6.4408(2)$ $c = 8.3867(7)$ $112.134(10)$ 90 $112.416(8)$ $113.529(6)$ $99.110(4)$ $77.589(7)$ $95.321(4)$ 90 $116.219(10)$ Packing: $V(Å^3), Z$ $1366.2(3), 2$ $1338.0(1), 2$ $B = 10.790(2), 20.590(2), 556$ $1.317, 530.59(2), 556$ $12.90(2), 50.70(2), 342$	Unit cell determination:	Least-squares fit from 68 reflections ($\theta < 45^{\circ}$)	Least-squares fit from 68 reflections ($\theta < 45^{\circ}$)	Least-squares fit from 70 reflections ($\theta < 45^{\circ}$)
$113 \cdot 52(6)$ $99 \cdot 110(4)$ $77 \cdot 589(7)$ $113 \cdot 52(6)$ $99 \cdot 110(4)$ $77 \cdot 589(7)$ $95 \cdot 321(4)$ 90 $116 \cdot 219(10)$ Packing: $V(Å^3), Z$ $1366 \cdot 2(3), 2$ $1338 \cdot 0(1), 2$ $834 \cdot 4(2), 1$ D_{-} ($r_{-} cm^3)$ $M_{-} F(000)$ $1 \cdot 290 \cdot 530 \cdot 59 \cdot 556$ $1 \cdot 317 \cdot 530 \cdot 59 \cdot 556$ $1 \cdot 292 \cdot 550 \cdot 70 \cdot 342$	Unit cell dimensions (Å, °)	a = 10.501(6) b = 14.3411(24) c = 11.0770(11) 112.134(10)	a = 14.3565(10) b = 14.6551(7) c = 6.4408(2) 90	$a = 11 \cdot 2133(15)$ $b = 10 \cdot 7153(7)$ $c = 8 \cdot 3867(7)$ $112 \cdot 416(8)$
Packing: $V(Å^3), Z$ 1366·2(3), 2 1338·0(1), 2 834·4(2), 1 $D_1(g \text{ cm}^3), M_F(000)$ 1.290, 530.59, 556 1.317, 530.59, 556 1.295, 650.70, 342		113·529(6) 95·321(4)	99·110(4) 90	77·589(7) 116·219(10)
$D_{\rm (gcm^3)}M_{\rm F(000)}$ 1.290 530.59 556 1.317 530.59 556 1.295 650.70 342	Packing: V ($Å^3$), Z	1366-2(3), 2	1338.0(1), 2	834.4(2), 1
	D_{c} (g cm ³), $M, F(000)$	1.290, 530.59, 556	1.317, 530.59, 556	1.295, 650.70, 342
μ (cm ⁻¹) 6.75 6.89 7.42	μ (cm ⁻¹)	6.75	6.89	7.42
Experimental data	Experimental data			
Technique Philips PW1100 four-circle diffractometer, bisecting geometry. Graphite-oriented monochromator. $\omega/2\theta$ scans.	Technique	Philips PW1100 four-circle d Graphite-oriented monochron	liftractometer, bisecting geometry. nator. $\omega/2\theta$ scans.	
Soon width (2)	Construidth (?)	Detector apertures 1 × 1°. 1 n	$\frac{1}{5}$	16
3 Call Walth () 1.3 1.3 1.0 -6		1.3	1.3	1.0
$v_{\text{max}}(\cdot)$ 0.5 0.5 0.5 0.5	Number of reflections:	05	05	05
Independent 4469 1106 2907	Independent	1169	1106	2907
$\begin{array}{cccc} \text{Interpendent} & & \text{Interpendent} & & \text{Interpendent} \\ \text{Observed} & & 2602 (2\sigma(l) \text{ oritorion}) & & 1051 (2\sigma(l) \text{ oritorion}) & & 2326 (2\sigma(l) \text{ oritorion}) \end{array}$	Observed	$\frac{4400}{2602}$ [2 $\sigma(I)$ ortitorion]	$1051 [2 \sigma(l) \text{ oritorion}]$	22007
Standard reflections2 reflections every 90 minutes. No variation	Standard reflections	2 reflections every 90 minute	s. No variation	2550 [20(1) chieffold]
Solution and refinement	Solution and refinement			
Solution Direct methods: Sir92	Solution		Direct methods: Sir92	
Refinement:	Refinement:		E-11 matrix	
Least-squares on F_{o} Full matrix	Least-squares on r _o		Full matrix	
r atalieteis.	Number of voriables	166	122	204
Degree of freedom 2126 019 2050	Degrees of freedom	2126	019	2050
Degrees of interdom 3150 916 2050	Patio of freedom	7.7	7.0	2030
Kalud shift arror 0.01 0.08 0.02	Final shift/arror	0.01	0.09	0.02
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Secondary extinction (10^4)	0.20(2)	0.25(2)	0.03
	H stores	0.20(2)	Grom difference synthesis	0.27(4)
Weighting scheme Empirical as to give no trends in (M^2F) we $(F = 1)$ and Tein $A/3$	Weighting scheme	Empirical as to give no trend	$r = 10 \text{ m} \text{ or } 10 \text{ m} \text{ m} \text{ or } 10 \text{ m} \text{ m} \text{ or } 10 \text{ m} \text$	(2)
May thermal value (\hat{A}^2) Lill(((3))mod 2) = 0.106(3) Lil3(C(14) = 0.138(2) Lil2(C(25)) = 0.124/4	Max thermal value $(Å^2)$	U111(C(33)mol 2) - 0.106(3)	II33[C(14)] = 0.138(2)	$1/2$ U22(C(26)) $\sim 0.124(4)$
Final AF neak (e Å ⁻³) 0.22 0.100(2) 0.100(2) 0.100(2) 0.124(4)	Final ΔF neaks(e Å ⁻³)	0.22	0.19	0.24(-1)
Final R and Rw 0.053, 0.058 0.042, 0.053 0.048, 0.051 $*$ 97	Final R and Rw	0.053, 0.058	0.042, 0.053	0.048.0.051 * 97

Table 1. Crystal analysis parameters at room temperature

metry (DSC) 344.7 °C (from dichloromethane–hexane) (1a). The samples recrystallized from ethanol (1b) and acetic acid showed by DSC the same melting point; in the case of the latter crystals the loss of the acetic acid was observed at 111 °C. IR (KBr), ν (cm⁻¹): 3125, 3105, 2915, 1605, 1555, 1520, 1480, 1395, 1335, 1305, 1200, 1185, 1130, 1105, 1080, 1050, 1035, 1020, 950, 930, 915, 895, 855, 790, 765, 665, 640, 625. MS, m/z (relative intensity, %): 532 (M⁺⁺ + 2, 10), 531 (M⁺⁺ + 1, 48), 530 (M⁺⁺, 100), 476 (13), 475 (41), 463 (30), 462 (32), 395 (15), 265 (16), 80 (110), 79 (10), 68 (12). Elemental analysis: calculated for C₂₈H₂₆N₁₂, C 63·38, H 4·94, N 31·68; found, C 63·63, H 4·91, N 31·23%.

X-ray crystallography. Details of data collection and processing are presented in Table 1. Polymorphs 1a and 1b were obtained by slow evaporation of saturated solutions in dichloromethane-hexane and in ethanol, respectively. The structures were solved by direct methods (Sir92).⁴ The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were included as isotropic. Most of the calculations were performed on a VAX6410 computer using the Xtal System.⁵ The atomic scattering factors were taken from Ref. 6.

Semi-empirical calculations. The molecular structures for the fourteen possible combinations of up and down pyrazoles (Scheme 1) were optimized using the AM1 parametrizations of the Hamiltonian as implemented in the MOPAC6.0 package.⁷ The only restriction imposed was the planarity of the pyrazole and benzene rings. The calculations were performed on an ALPHA3000-300X DEC station.

RESULTS AND DISCUSSION

Syntheses

The synthesis of 1,2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3", 5"-dimethylpyrazol-1"-yl)benzene (1) has been achieved

by the reaction of 1,4-bis(3',5'-dimethylpyrazol-1'-yl)-2,3,5,6 tetrafluorobenzene³ with the pyrazole anion in a molar ratio 1:4 with a 95% yield (Scheme 2).

¹H NMR spectra of a freshly prepared solution of 1 and its evolution with time in solvents such as $CDCl_3$ and methanol- d_4 were recorded [see Table 2 and Figure 1(a) and (b)]. The spectra of the freshly prepared solutions show signals which correspond to a single isomer, after 24 h the presence of a minor new rotational isomer is detected and the proportion does not change with time, the initial conformer being the majority component with a ratio of 9:1. We succeeded in isolating a mixture enriched in the minor isomer; its ¹H NMR spectrum was recorded and after 24 h the same equilibrium mixture was obtained.

The ¹³C NMR spectra are reported in Table 3. The ¹³C CP/MAS NMR spectra of 1 (polymorphs 1a and 1b) and its acetic acid complex show data which agree with the existence of 1 in the solid state as only one conformer [see Figure 2(a) and (b)] but with two different structures: in 1a there are two kinds of dmpz whereas in 1b there is only one kind. The corresponding inclusion compound $1 \cdot 2AcOH$ shows the signals of acetic acid in a 2:1 ratio and only one kind of dmpz [Figure 2c)].

X-ray analysis

Crystals of the two polymorphic forms 1a and 1b and of the inclusion complex $1 \cdot 2AcOH$ were obtained in dichloromethane-hexane, ethanol and acetic acid, respectively. Table 4 summarizes the main geometric characteristics of the molecular structures according to the numbering scheme shown in Figure 3. All molecules were located on inversion centers: two independents halves are present in 1a and half a host and one acetic acid molecule in the complex. In the 1b form, the host molecule shows higher symmetry than in the two others since the 3,5-dimethylpyrazole (dmpz) rings are on mirror planes and the molecule also exhibits a twofold axis perpendicular to it (C_{2v}). These results are in

Scheme 2

		đi	methylpyrazol-1"-y	/I)benzene			
Compound	H-3'	H-4'	H-5'	H-4″	CH ₃ -3"	CH ₃ -5"	Solvent
1 ª	7·35 (dd)	6.11 (dd) $J_{\text{H3',H4'}} = 1.8$ $J_{\text{H4',H5'}} = 2.5$	7.36 (dd) $J_{\rm H3', H5'} = 0.5$	5·61 (s)	2·10 (s)	1.82 (s)	CDCl ₃
	7.41 (dd) $J_{H3',H4'} = 1.9$ $J_{H3',H5'} = 0.5$	6.11 (dd)	7.11 (dd) $J_{\rm H4', H5'} = 2.5$	5·64 (s)	2·03 (s)	1·97 (s)	
1 ^a	7.36 (dd) $J_{\rm H3', H5'} = 0.4$	6.17 (dd) $J_{\text{H3',H4'}} = 1.9$ $J_{\text{H4',H5'}} = 2.6$	7.41 (dd)	5·71 (s)	2·05 (s)	1·86 (s)	Methanol-d₄
	7.38 (dd) $J_{H3',H4'} = 1.9$ $J_{H3',H5'} = 0.5$	6·17 (dd)	7.29 (dd) $J_{H4',H5'} = 2.4$	5·74 (s)	1·99 (s)	1·99 (s)	

Table 2. ¹H NMR chemical shifts (δ, ppm) and coupling constants (J, Hz) of 1,2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"dimethylpyrazol-1"-yl)benzene

*The signals of the major isomer are given first.

Figure 1. ¹H NMR spectra of (a) a freshly prepared solution in CDCl₃ of 1,2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"-dimethylpyrazol-1"-yl)benzene and (b) a solution in CDCl₃ of 1,2,4,5-tetrakis(pyrazol-1''-yl)-3,6-bis(3",5"-dimethylpyrazol-1"-yl)benzene after standing for 24 hours

Table 3.	C NMR c	hemical sh	uifts (ð, pf	om) and coupling	g constants (J, H	z) of 1,2,4,5-tetral	kis(pyrazol	-1'-yl)-3,6-bis(3",	,5" -dimethyl	yrazol-1"-yl)b	enzene
Compound	C-1	C-2	C-3	C-3′	C-4'	C-5′	C-3"	C-4″	C-5"	CH ₃ -3"	CH ₃ -5"
2 72	137.2	137-2	135.1	$\begin{array}{c} 141.4 \\ 1_{H3'} = 186.6 \\ {}^{2}J_{H4'} = 5.9 \end{array}$	$\frac{106.7}{^{1}J_{H4'}} = 178.5$	${}^{1}J_{\rm HS'} = 191.9$ ${}^{2}J_{\rm H4'} = 9.4$	150-4	${}^{1}J_{H4} = 174 \cdot 1$	143.1	13.4 ' <i>J</i> = 127.4	10.5 J = 129.2
	137-2	137-2	135-4	³ J _{H5} , = 8.4 141.4	${}^{2}J_{H5'} = 8.9$ 107.1	${}^{3}J_{H3'} = 4.6$ 131.1	150-5	105-5	143.3	13.4	10-5
1a ^b	138-7	138-7	136-7	140.8	108-3	131-2 131-7	148-3 151-4	107.1	142.2	13-0 14-1	9.7 10.8
1b ^b 1 · 2AcOH ^{b.c}	138-1 137-5	138-1 137-5	138-1 133-7	138-1 141-5	107-0 107-0	130-9 131-8	148-1 148-9	105-0 106-3	142·6 141·5	15-0 13-3	11-5 10-3
"The signals of	the major ison	ner are give	n first (solv	ent: CDCl ₃).							

Table 3. ¹³C NMR chemical shifts (ð. ppm) and coupling constants (J. Hz) of 1.2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"-dimethylpyrazol-1"-yl)benzene

^bCP MAS. ^c Acetic acid: 21.7 (CH₃), 179.7 (C=O).

721

Figure 2. ¹³C NMR spectra in the solid state of (a) 1,2,4,5-tetrakis(pyrazol-1'-yl)-m3,6-bis(3",5"-dimethylpyrazol-1"-yl)benzene (polymorph 1a) (75 MHz), (b) 1,2,4,5-tetrakis(pyrazol-1'-yl)-3,6-bis(3",5"-dimethylpyrazol-1"-yl)benzene (polymorph 1b) (50 MHz) and (c) inclusion compound 1 · 2AcOH (75 MHz)

	<u> </u>	Compound 1a							
		Molecule 1			Molecule 2				
	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3			
N(i1)— $N(i2)N(i1)$ — $C(i5)N(i2)$ — $C(i3)C(i3)$ — $C(i4)C(i4)$ — $C(i5)$	$1 \cdot 355(4)$ $1 \cdot 355(4)$ $1 \cdot 312(4)$ $1 \cdot 384(6)$ $1 \cdot 345(5)$	1.374(3) 1.351(4) 1.327(5) 1.393(4) 1.362(5)	1·363(2) 1·351(4) 1·319(4) 1·391(5) 1·356(3)	$ \begin{array}{r} 1.355(3) \\ 1.339(4) \\ 1.317(5) \\ 1.370(6) \\ 1.360(5) \end{array} $	1·370(3) 1·355(3) 1·326(3) 1·393(4) 1·359(4)	1·348(5) 1·344(4) 1·333(6) 1·369(6) 1·352(6)			
$\begin{array}{l} N(i2) - N(i1) - C(i5) \\ N(i1) - N(i2) - C(i3) \\ N(i2) - C(i3) - C(i4) \\ C(i3) - C(i4) - C(i5) \\ N(i1) - C(i5) - C(i4) \end{array}$	$ \begin{array}{c} 111 \cdot 1(3) \\ 104 \cdot 2(3) \\ 112 \cdot 5(4) \\ 105 \cdot 0(3) \\ 107 \cdot 3(3) \end{array} $	112.6(2) 104.0(2) 111.0(3) 107.0(3) 105.4(2)	112·2(2) 103·6(2) 112·4(3) 105·3(3) 106·6(3)	111.9(3) 103.6(3) 112.8(4) 104.9(4) 106.8(3)	$112 \cdot 4(2) \\104 \cdot 0(2) \\111 \cdot 2(3) \\106 \cdot 7(3) \\105 \cdot 6(2)$	112·4(3) 102·8(3) 113·0(4) 104·8(3) 107·0(3)			
N(i2)— $N(i1)$ — $C(i)$ — $C(i-1)$	52.8(4)	-87.8(3)	120-5(3)	58.1(4)	-90.3(3)	113.9(3)			
		Compound 1b		Co	mpound 1 · 2AcC	он			
	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3			
N(i1)N(i2) N(i1)C(i5) N(i2)C(i3) C(i3)C(i4) C(i4)C(i5)	1.356(3) 1.352(3) 1.317(3) 1.368(5) 1.365(4)	1·371(3) 1·359(3) 1·327(3) 1·397(4) 1·368(3)	1·356(3) 1·352(3) 1·317(3) 1·368(5) 1·365(4)	1·354(3) 1·352(3) 1·325(3) 1·377(4) 1·361(3)	1·374(3) 1·348(4) 1·325(4) 1·388(5) 1·375(4)	1·357(3) 1·340(3) 1·325(4) 1·377(4) 1·360(5)			
$\begin{array}{l} N(i2) - N(i1) - C(i5) \\ N(i1) - N(i2) - C(i3) \\ N(i2) - C(i3) - C(i4) \\ C(i3) - C(i4) - C(i5) \\ N(i1) - C(i5) - C(i4) \end{array}$	112·0(2) 103·9(2) 112·4(2) 105·9(3) 105·7(2)	112-8(2) 103-8(2) 111-7(2) 106-3(2) 105-5(2)	112-0(2) 103-9(2) 112-4(2) 105-9(3) 105-7(2)	112.8(2) 103.1(2) 112.7(3) 105.5(3) 105.9(3)	113.0(3) 103.7(2) 111.6(3) 106.6(3) 105.1(3)	112·1(2) 103·1(2) 113·1(3) 104·4(3) 107·3(3)			
$\frac{N(i2)-N(i1)-C(i)-C(i-1)}{N(i2)-N(i1)-C(i-1)}$	116-5(2)	-87.4(2)	65.7(2)	57.4(3)	-94.5(3)	114.9(3)			

Table 4. Selected geometric parameters (Å, °)*

^a For comparison purposes and owing to the symmetry in compound 1b, column i = 3 is equivalent to i = 1.

perfect agreement with the solid-state NMR results: triclinic polymorph **1a** two independent halves, that is, two dmpz: monoclinic polymorph **1b** one quarter of an independent molecule, that is, one dmpz; acetic acid complex half an independent molecule (one dmpz) and one acetic acid molecule (stoichiometry 1:2).

The molecules in 1a, 1b and $1 \cdot 2\text{AcOH}$ have essentially the conformation labelled 1 in Scheme 1. All the nitrogen [N(i2)] of the pyrazole rings are placed, alternately, up(u) and down(d) with respect to the benzene ring^{1,2} giving rise to the *ududud* conformation (see semi-empirical calculations and Scheme 1). In all of them, the dmpz rings appear to be almost perpendicular to the benzene ring while the pz rings make angles of 60° with it [torsion angles close to 60 or 120° using an anticlockwise definition in the benzene ring (Table 4 and Figure 4)]. The lowest N(i2)-N(i1)-C-C torsion angles presented by the pz rings are counterbalanced by the presence of $C(i5)-H(i5)\cdots N$

intramolecular distances shorter than the sum of van der Waals radii⁸ of 3.28 Å, as in **1a** with C(i5)—H(i5)···N(22) [i = 1, 3 in molecule 1, 3.191(4), 3.238(4); i = 1 in molecule 2, 3.196(4) Å] or in 1.2AcOH [i = 1, 3.203(3) Å]. These distances correspond to torsion angles <60° or greater >120° (Table 4).

The crystal packing of **1a** [Figure 4(a)] consists of piles of alternating independent molecules along the baxis. The benzene rings are mutually rotated 24° on average as measured by the lowest Cphenyl1...Cent1...Cent2...Cphenyl2 pseudo-torsion angle (Cent = centroid of the phenyl ring). The benzene plane makes an angle of $13 \cdot 1(2)^{\circ}$ and their centroids are b/2 A apart. In 1b, only piles of identical molecules along the c axis are observed so that the benzene rings are parallel and the centroid separation is shorter than in la (c parameter in 1b < b/2 in 1a).

In $\hat{I} \cdot 2AcOH$, the acetic acid molecules are arranged in centrosymmetric dimers $[O \cdots O = 2.671(3) \text{ Å}$ and

Figure 3. ORTEP⁵ view of compound $1 \cdot 2A$ with the host projected on the benzene ring showing the numbering system using in the three structures. Ellipsoids are drawn at the 30% probability level

 $O-H\cdots O = 172(8)^{\circ}$]. The packing is analogous to that of polymorph **1a** [Figure 4(a) and (c)] where one molecule of the two different ones has been replaced by the dimer. This resulted in a shortening of the axis of the columns. The formation of acetic acid dimers is unusual since it has been observed previously only in four structures (CSD⁹ refcodes: COVFUO, PEHYUW, VEVLOX and VUSLIE).

No intermolecular contacts shorter than the sum of van der Waals radii⁸ has been detected.

NMR spectroscopy and the structure of the minor isomer

An important fact in Table 2 must be stressed: the minor isomer shows only the signals for *one* pz and *one* dmpz (ratio 4:2) and this in different solvents. Hence the following criteria are to be used to establish the structure of the minor isomer:

(1) the isomer must have a symmetry consistent with only one dmpz and one pz in ¹H NMR; this criterion is excluding;

(2) according to the results obtained in Parts 1 and 2,^{1,2} the number of uu (dd) interactions has to be the least possible;

(3) a minor condition is that the number of uuu (or ddd) situations should also be the least possible. The possible situations for three adjacent pyrazoles are udu (dud), duu (udd) and uuu (ddd), which we have called V-shaped (V), L-shaped (L) and horizontal-shaped (H). We have summarized in Table 5 and Scheme 3 these criteria for the 14 isomers.

Semi-empirical computations

Semi-empirical AM1 calculations were carried out for the fourteen isomers shown in Scheme 3 and the energies corresponding to the minima are reported in Table 5. Two different conformations similar in energy $(0.7 \text{ kcal mol}^{-1})$ were obtained for isomer 1 (starting from one dmpz: $-92.0, 115.8, -63.0, 92.0, -115.8, 63.0^{\circ}$ and $-97.1, 75.0, -65.0, 97.1, -75.0, 65.0^{\circ}$). The more stable conformations correspond, in terms of torsion angles, to those found in the crystal structures of the studied compounds (Table 4). The energies in Table 5 can be analysed using a very simple additive model: $\Delta H = a_0 + a_1(uu) + a_2(uuu)$. The model considered, based on our previous experience, that the disfavorable terms are two or three adjacent pyrazoles with the same orientation uu (or dd) and uuu (or ddd). The result of the multiple

Figure 4. Crystal packings of (a) 1a down the b and c axes, (b) 1b and (c) $1 \cdot 2AcOH$ down the c and a axes

Conformer	dmpz	pz	ии ((dd) interactions	Δ <i>H</i> (AM1)	(kcal mol ⁻¹)
1	1 (2 V)	1 (4V)		0	5	08.7
2a	$2(\mathbf{V}, \mathbf{H})$	2(2V, 2L)		2	5	11.5
2b	2(L, H)	3(2V, H, L)		2	5	11.2
3a°	2(V, L)	2(1V, 3L)		2	5	11.3
3b	2 (2L)	2(2V, 2L)		2	5	11.4
4 a	1 (2L)	2 (2V, 2L)		2	5	11.5
4b	1 (2 V)	1 (4 L)		2	5	11.6
5a	1 (2 H)	1 (4L)		4	5	14.0
5b	1 (2L)	2 (2H, 2L)		4	5	13.2
6a	2 (L, H)	3 (2H, V, L)		4	5	14.4
6b	2 (V, H)	2 (2H, 2L)		4	5	14.5
7a	2 (L, H)	2 (1 H , 3L)		4	5	14.0
7b	1 (2L)	2 (2H, 2L)		4	5	14.4
8	1 (2 H)	1 (4 H)		6	5	17.9
	as another enantiomer					
1	2a	2b	38	3b	4a	4b
ł dmpz, V pz, V	1 dmpz, V 1 dmpz, H 2 pz, L 2 pz, V	l dmpz, L l dmpz, V 2 pz, V l pz, H l pz, L	l dmpz, V l dmpz, L l pz, V 3 pz, L	2 dmpz, L 2 pz, V 2 pz, L	2 dmpz, L 2 pz, L 2 pz, V	2 dmpz, V 4 pz, L
5a	5b	6 a	6b	7a	7Ь	8
dmpz, H pz, L	2 dmpz, L 2 pz, H 2 pz, L	ldmpz, H ldmpz, L lpz, V	1 dmpz, V 1 dmpz, H 2 pz, H 2 nz, L	i dmpz, H I dmpz, L I pz, H 3 pz, L	2 dmpz, L 2 pz, H 2 pz, L	2 dmpz, I 4pz, H

Table 5. NMR characteristics of the 14 isomers

regression is ΔH (kcal mol⁻¹) = 508.9 ± 0.3 + (1.16 ± 0.15) (*uu*) + (0.29 ± 0.13) (*uuu*), *n* = 14, *r*² = 0.978.

1 pz, L 2 pz, H

Mixing symmetry and energy considerations (see Scheme 3 and Table 5), the only possible candidate for the minor isomer is **4b** (torsion angles starting from one dmpz: $-91\cdot1$, $61\cdot9$, $61\cdot9$, $-91\cdot1$, $118\cdot1$, $118\cdot1^\circ$).

Supplementary material

Lists of the structure factors, atomic coordinates and thermal components for the non-hydrogen atoms,

hydrogen atom parameters, bond distances and angles are available from C. F.-F on request.

ACKNOWLEDGEMENTS

Financial support was provided by the Spanish DGI-CYT (PB93-0197-C02 and PB93-0289-C02-m01). C. F-C. and C. E. thank the Comunidad de Madrid for a fellowship (Acción Especial No AE00067/95). The ¹³C CP/MAS NMR spectra of compounds 1a and $1 \cdot 2C_2H_4O_2$ were recorded at 75 MHz at Bruker

Analytische Messtechnik by Dr H. Forster; the help of Dr C. Marfisi (Bruker Española) is gratefully acknowledged.

REFERENCES

- 1. C. Foces-Foces, A. L. Llamas-Saiz, R. M. Claramunt, N. Jagerovic, M. L. Jimeno and J. Elguero, J. Chem. Soc., Perkin Trans. 2 1359 (1995).
- 2. C. Foces-Foces, A. L. Llamas-Saiz, C. Escolastico, R. M. Claramunt and J. Elguero, J. Phys. Org. Chem., 9, 137 (1996).
- 3. C. Fernández-Castaño, C. Foces-Foces, F. H. Cano, R. M. Claramunt, C. Escolástico, A. Fruchier and J. Elguero, New J. Chem, in press.

- 4. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. App. Crystallogr. 27, 435 (1994). 5. S. R. Hall, H. D. Flack and J. M. Stewart, *Xtal3.2*. Univer-
- sity of Western Australia, Perth (1994).
- 6. International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham (1974).
- 7. J. J. P. Stewart, J. Computer-Aided Mol. Des. 4, 1 (1990).
- 8. B. K. Vainshtein, V. M. Fridkin and V. L. Indenborn, Modern Crystallography II, p. 87. Springer, Berlin, (1982).
- 9. F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, J. F. Mitchell, J. M. Smith and D. G. Watson, J. Chem. Inf. Comput. Sci. 31, 187 (1991).